

Computer Science
Progression of Skills	

Foundation	Stage Year	1 Year	2 Year	3 Year	4 Year	5 Year	6

• Be able to give a floor
robot instruction to make
it move.

• Use simple software and
explain what you are
doing.

• Understand what
happens when you click a
button or touch an icon.

• Give instructions to a
friend and follow their
instructions to move
around a space.

• Describe what happens
when buttons are
pressed on a robot or
device.

• Press buttons in the
correct order to make a
robot follow a short
sequence.

• Understand what an
algorithm is and be able
to create a simple
algorithm.

• Understand and explain
how algorithms are
used in every day life.

• Begin to predict what
will happen for a short
sequence of
instructions.

• Begin to use different
software or applications
to create movement
and patterns on a
screen.

• Use the word debug to
correct an algorithm
that doesn’t work in the
way it was intended.

• Understand what an
algorithm is and
demonstrate simple linear
algorithms.

• Be able to explain the
order needed to do things
to make something
happen and to talk about
it as an algorithm.

• Programme a robot or
software to do a particular
task.

• Look at a basic program
and explain what will
happen.

• Use programming
software and applications
to make objects move.

• Use logical reasoning to
predict and debug more
complex programs.

• Can create and debug
with improved confidence
& efficiency.

• Begin to program using
simple block code.

• Understand how an
algorithm is implemented
using a sequence of precise
instructions.

• Can predict the outcome of
a sequence of precise
instructions.

• Repeatedly test a program
and recognise when they
need to debug it.

• Detect a problem in an
algorithm, which could
result in a different outcome
to the one intended.

• Understand what inputs and
outputs are, how they can
be used.

• Provide examples of how to
use inputs and outputs
effectively.

• Design, write, execute and
debug programs of
increasing complexity that
accomplish a specific goal.

• Use logical reasoning to
predict and debug more
complex programs including
inputs and outputs.

• Design simple algorithms
using loops and repeats,
whilst detecting and
correcting errors is
debugging.

• Write and execute an
efficient program, using
loops such as forever,
repeat & repeat until
commands.

• Decompose a problem into
smaller parts with some
verbal reasoning.

• Has an understanding of
how sequencing, using
inputs and repetition in
programs has specific
effects on the output, works
with ‘loops’ and
understands their effect.

• Recognise that an algorithm
will help to sequence more
complex programs.

• Use logical reasoning to
predict and debug more
complex programs including
loops and repeats.

• Program a condition that
uses a sensor to detect a
change, which can select an
action within a program.

• Decomposes more open-
ended problems into smaller
parts, provides some
reasoning for their choices.

• Approaches a range of
problems using
computationally thinking
concepts, helping them to
design other algorithms for
other specific outcomes.

• Design, write and execute
an efficient program,
including selection
(IF…THEN) command.

• Change an input to a
program to achieve a
different output.

• Use logical reasoning to
predict and debug more
complex programs including
selection.

• Uses programs linked to
physical systems and
sensors e.g. the alarm goes
off when the sensor is
triggered.

• Design, write and execute
an efficient program, which
demonstrates and
understanding of the
difference between, and
appropriate use of
IF…THEN,
IF…THEN…ELSE, and
nested IF statements.

• Understand the importance of
planning, testing and correcting
algorithms.

• Demonstrate a range of different
strategies to solve a problem
including: abstraction,
decomposition, logic &
evaluation.

• Understand why sequence &
patterns are important when
creating simple algorithms that
are part of a more complex
program.

• Gives reasoning for each step
within algorithms and applying
them to a program.

• Understand & develop complex
flow diagrams.

• Use a variable to increase
programming possibilities.

• Use a variable and relational
operators (e.g. < = >) within a
loop to stop a program.

• Evaluate the effectiveness and
efficiency of an algorithm while
continually testing the
programming of that program.

• Use different inputs (including
sensors) to control a device or
onscreen action and predict
what will happen.

• Use logical reasoning to predict
and debug more complex
programs including: selection,
variables and operators.

